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Abstract. We show that a one-dimensional aperiodic Delaunay set of pairtsgether with

the Fourier transform of its autocorrelation measure (square modulus of its structure factor) at a
wavevectork = 27 /A, can be associated with a generalized Meyer set under some assumptions:
(a) that the internal space is torig/AZ, with a window, assumed finite, equal to the set of affine
lattices of period. which have a non-empty intersection withand rarefaction laws at infinity,

a selection rule based on a congruence mode with respect(l) a scaling exponent function,
having values in [01], can be uniquely defined on the window from rarefaction laws, which is
related to the scaling properties of the intensity function; (c) the projection mappings are adapted
to the average lattice of and are not orthogonal. The case of Bragg peaks of the Thue—Morse
sequence spectrum is developed explicitly in this context.

1. Introduction

The notion of anodel setleveloped by Meyer [1, 2] in the context of cut-and-project schemes
(CPSs), inthe 1970s, has been applied successfully and extensively to the study of the structure
of quasicrystals for more than ten years. Its simplicity, which is expressed by the existence of
a suitable lattice in a periodization space, suitable windows in the internal space and its power
for refining structure models [3] make model sets new exciting tools for studying aperiodic
sets of points modelling aperiodic crystals and particularly quasicrystals.

However, the constructions of Meyer were more general. They were developed in the
context of locally compact Abelian groups, that is finite-dimensional Euclidean sfdtes
compact subgroups of the infinite torlis°, discrete or finite groups, and so on (Rudin [12],
chapter 2) and for classes of Delaunay sets greater than the class of model sets; whereas the
applications to quasicrystals are only using Euclidean spaces and model sets. Here, we are
interested in the fundamental question of understanding when toric internal spaces appear
naturally in the study of general Delaunay point sets, for what purposes they may be used,
which characteristics possess windows. For this, we assume that these Delaunay point sets
still lie in a Euclidean space.

In the following, given a Delaunay sét, we claim that a toric internal space is important
for describing the behaviour of the diffracting intensity functionfofind for describing its
scaling exponents. We show that these scaling exponents arise from the rarefaction laws, at
infinity, of distributions of points on affine lattices intersectingvhen some assumptions are
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satisfied. The diffracting intensity function of is expressed by the Fourier transform of the
autocorrelation measure (which is the square modulus of its structure factor, normalized by
the number of diffracting sites). Delaunay satsvill lie on the positive real line for the sake

of simplicity.

Indeed, when aperiodic point sets are no longer quasiperiodic, the search for sets
supporting the components of the spectrum, Bragg, singular continuous and absolutely
continuous becomes more difficult. Model sets formechbymal cut-and-project schemes
with Euclidean spaces as physical space and internal space, give only pure Bragg spectra [4].
Many other possibilities could of course occur, and the full generality of the theory calls for new
concepts to deal with scaling exponents associated with the singular continuous components
of the spectra.

Hof [4] has developed a mathematical model of diffraction theory adapted to any Delaunay
setinR",n > 1. He shows that knowledge of the autocorrelation measure of this set
is basic since it gives rise, by its Fourier transform, to the diffraction patterns of the set,
known to physicists. This Fourier transform is a positive measure (Bochner’s theorem). For
instance, it can be computed directly by hand in the case of interpenettathgsters, where
G is a finite non-crystallographic symmetry point group and wbenlusters are arranged
quasiperiodically or not [5]. When arranged quasiperiodically in a suitable way, the system
of interpenetratings-clusters is a quasicrystal [6], and this approach is another view of the
diffraction of the quasicrystal through the existence of the local clusters of atoms it contains.

Of importance for an arbitrary Delaunay gets the localization and the search for Bragg
peaks and of peaks belonging to the singular continuous component of the speciruirhié
can be carried out by a suitable Fourier—Bohr analysis [7-9], up to some limit, by the average
unit cell approach [10, 11], typical of finite systems. Here, we propose a different scheme. We
fix a certain wavevectak, that is a period. = 27 /k > 0 and want to understand the scaling
properties of the intensity & We consider all the affine latticesitof periodx which have a
non-empty intersection with and assume they are a finite number of them. This is expressed
by the finiteness af2,, (section 2), that is the fact that the windéy has a Hausdorff measure
equal to zero (section 5). The second assumption is about rarefaction laws at infinity. Let
v+AZ any affine lattice intersecting. If ¢ denotes the number of adjacent cells of this lattice
counted from the origin, we assume that the number of pointgs #.7Z) N A within thesey
cells is given by, wheg goes to infinity,

A1(@) g™ + Ax(q) ¢ + As(g) g% + - @)

where theA ;(¢)’s are bounded, o, (v) > d> > d3 > --- > 0. We assume a little more,
that theA ;(¢)’s are all constant. We writd;(¢) = 8. in section 2. Of course, all the
A;(g)'s and theds's depend onv. Such an expression is called a rarefaction law of the affine
lattice v + AZ at infinity. Under these two assumptions, thie are attributed a dominant
coefficientay (v) and are classified by lexicographical order (section 3%k /2; +A/2]. We
claim that allv’s having the maximal value af, (v) intervene in the diffraction process when
some combinations of exponentials do not cancel (theorem 1). The scaling exponent of the
diffracting intensity is then directly® (v) — 1. When some combinations of exponentials
cancel, the scaling exponent becomes one ofiflee j > 2 (theorem 2). For this reason, we
calld; the (fractal) levels of the scaling exponent function. The internal space, toR¢gAB
and the window is the finite formal external sum of affine lattices of given periadhich
intersectA, represented by thes (section 5).

The structure factor ol gives the Fourier transform of its autocorrelation measure. We
allow a suitable Lebesgue decomposition of it according to the levels of the scaling intensity
function (section 3) to show that the fractal scaling exponents of the intensity which appear by
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this method are correlated to the fractal rates of occupancy at infinity of these affine lattices that
intersectA, that is their rarefaction laws at infinity. The case of the Thue—Morse quasicrystal

is presented in this context for certain valueg.ofVe know that the Thue—Morse sequence is

not a model set since its spectrum has a non-trivial singular continuous component [22, 23]. It
is a Meyer set, a harmonious set (sections 4 and 5). Here, we investigate Bragg peaks by the
present method, leaving singular continuous peaks for another contribution [21, 25]. Figures
showing the scaling behaviour of the diffracting intensity of the Thue—Morse sequence are
reported in Wolnyet al [13].

The present contribution reports (in section 5) a discussion of the axiomatics of the cut-
and-project scheme in order to include, for an arbitrary Delaunay set satisfying the above
assumptions, a toric internal space, scaling exponents associated with elements of windows,
when windows are finite, scaling properties for the diffracting intensity. We show that the
removal of one axiom is required for such a generalization of the CPS to allow more general
spectra than only pure Bragg spectra. It enables one to specify the geometrical origin of the
scaling exponents of the diffracting intensity. We examplify some results about the Thue—
Morse in this context.

2. Definitions

In the following, we will consider a sequence of points, as an image of a fungtisatisfying
the following assumptions:

(H). f is a strictly increasing function defined dhtaking values irR*, with £(0) = 0. The
set{ f(n)/n € N} is denotedA or A ;. It represents an infinite sequence of points on the real
line, satisfying the crystallographic hypothesis (Delaunay):

(D1) (A is uniformly discrete). 3r > O such that, for alln € N, each interval
]—r + f(n); +r + f(n)[ contains only the poinf (n) of the sequence,
(D2) (A is relatively dense).3R > 0 such tha¥x > 0,3n € N such thatx — f(n)| < R.
Let» > 0 areal number, and
Q, ={uel]-1/2;+1/2]/3n € N, f(n) = u + pA for a certain integep = p(n)}
the set of values of the sequente= { f (n)} moduloZa. Denote
Q= NR™ Q =0 NR.
For eachu € ]—A/2; +A /2], we set
N, (u) ={n e N/ap e N, —pr + f(n) = u}.

By definition, all the set!, («) are empty when € ]—1/2; +1/2]\ ©;, and non-empty when
u € Q.

Lemma 1. The following union is disjoint:

N = |_| N, (u). 3

ue2;
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This lemma gives a partitioning of the $&tvith respect to the affine lattices+ AZ, of period
A, which have a non-empty intersection with

Some of these lattices are strongly occupied by the points ahd others very few. In
order to understand their role in the diffraction process ¢f we introduce their asymptotic
rates of occupancy at infinity and fractional exponents. This will specify canonically the
dominant termsA1(g)q® ™’ of their rarefaction laws at infinity.

Foranyx > 0,q € N, N an integer> 1 andv € |—A/2; +1/2], we call

Py(q) = {n e N/f(n) € [0; gA]} 3
and
Sing) =#n e[0; N —1] | n € N, (v) NPy(g)}. 4)

We denote by # or by Cardy) the number of elements of an arbitrary finite $ét
Whena, ¢, v are fixed, the sequendé — &, v ,(v) is stationary: the first value ¥ when
this sequence reaches the plateau allows one to caleufeden /. We have

J(N=1) < qr < f(N) (5)
andg = [ f(N)/A], the greatest integer less tha@iN) /1. We denote by
8q(0) = A!l_fpoo 83.n.q(0) = # (N, (v) N P1(q))- (6)

For pairsq, N such that equation (5) is valid, we hasgy ,(v) = 8, ,(v). For each
v € Q;, we now consider the sets of exponents

{ﬂ e [0; 1]/I|m|nf 5.0 ) o} @)
q?
and
{y € [0; 1]/ lim sup—L—= ”( v) +oo}. 8)

SinceN;, (v) # ¢, the first set of exponents is not empty: it contains at Igast0. We call

ax(v)—sup{ﬁe[o 1]/I|m|nf ”() O}. 9)

Similarly, the second set of exponents above is not empty since it coptains: this comes
from the fact that #Y, (v) NP, (¢)) < ¢. Let us denote

a0, (v) = mf{y € [0; 1]/ lim sup Aqq( v) +oo}. (10)

q—>00

Proposition 1. For all v € ©;, we have
0<a,(v) <@ (v) <1 (11)

Proof. If «,(v) = O orif &, (v) = 1, the proposition is proved. Assurag(v) > 0 and
0 <@ (v) < «a,(v) < 1. Then there exist two real numbetspg’ such that

@) < B < B <a,().

We havea, (v) > B — B’ > 0, hence liminf_+[8: ,(v)/g?~#]1 > 0. Let us denote
by L this liminf. It is strlctly positive and there exists a subseque{zpféz e N} such

that I|m,_>+oo[6,\,,(v)/ql ’3] = L. Therefore, lim., +x[5s, q‘(v)/q,] = lim;_ s Lq,
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and tends to infinity. Howeverm,(v) < p and hence Iim+m[8x,q,(v)/qf] <
limsup, ., ,,,[8:.4(v)/¢"] < +oc. A contradiction. O

We will be mainly interested in rarefaction laws with the highest possible well defined
fractal exponents in the dominant terms.

Definition 1. For all v € @;, we define an average sublatticedrof period A, denoted by
v+Z\, of the sequenca = { f(n)}, as an affine lattice of periotlwhich containg and such
that

@, () =% @) = L.

Definition 2. We say that\ satisfies assumptiod() when, (a) foralv € @,, o, (v) = @, (v),
and when (b) for alb € ,, liminf ;. [8, ,(v)/¢*™] andlimsup, ., . [8: 4 (v)/g™ "] are
strictly positive, exist and are equal. In this case, we denote

a,(v) =a, (v) =@, (v) (12)
and
) . )
8™ (v) = liminf “’—EU)) = lim sup”—fv)). (13)
g—00 qotA v g—o0 qa;‘ v

In particular, when
a,(v)=1

we call this common lim#;, (v). Itis by definition the average number of points of the sequence
A = {f(n)} per cell of the average sublattiaet+ ZA.

The notation of equation (13) is such that the quarttity(v)) is a superscript and not an
exponent. Whewr; (v) = 1, the occupancy of the lattiae+ Zx is fairly regular. In this case,
we always havé, (v) € [0; 1]. The occupancy is fractional.

Wheng, (v) = @, (v) = 1 andé; (v) = 1, it means that we have exactly one point of the
sequence, on average, congruent,tper cell of the average sublattieer Z. This does not
mean that we have a full occupancy of the lattice Zx. Owing to the assumption (H-D2),
the number of successive cells of the lattice ZA receiving no points of the sequence at all
cannot be arbitrarily large.

Definition 3. A sequencé\ = {f(n)} such that2, is finite and, for allv € @,
a)\(l)) <1
is called singular ini.

The terminology is reminiscent of the fact that a Bragg peak cannot existaPr /1
when this condition is fulfilled, as will be shown below.

Conversely, for sequences of points that are subsets of lattices, we have the following
result.

Proposition 2. If A = {f(n)}is asubsetdf2r NN, r > 0, except a finite number of elements
eventually, then

(a) if L = 2r, then2, = {0}. The latticeZ2r is the average sublattice itn= 0 of period2r
of the sequencgf (n)}, with §, (0) = 1,

(b) if A is such that./2r > 0 can be written as/w € Q, withs, w € N\ {0}, ged?, w) = 1,
thenQ, is the set of residues dd, 1 x 2r,2 x 2r,...,(t — 1) x 2r € |—A/2; +1/2]
moduloZx, and, for allv € @, a, (v) = @, (v) = 1, with §, (v) = 1/w,
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(c) if & is such thatr/2r ¢ Q, then, is the uniformly dense set of residuesZ#r in
1—A/2; +A/2] moduloZx ande, (v) = @, (v) = Ofor all v € Q;.

From case (b), we see that each tilnis an integral multiple of 2 thenw = 1, i.e. each
lattice v + Zx is an average sublattice in for all v € €2,. Such collections of points are
singular for anyx which are incommensurate with the period #om (c).

Corollary. For any Delaunay sequenck = {f(n)}, if r, denotes the maximal bound of
such that the intervalb—r + f (n); +r + f (n)[, n € N, are mutually disjoint, then the sequence
A = {f(n)}is such that for any. < 2r, and anyv € |—1/2; +1/2], we have’, (v) € [0; 1]

if it exists.

The value 1 cannot be reached in this case, sites being too dispersed on each affine lattice
v+ZA, v E Q.

3. Fourier transform decomposition by sublattices

Let» > 0 and assume th&?, is finite. Letk = 27 /X be the corresponding wavevector and

N > 1 be an integer. We will make a Lebesgue-type decomposition of the structure factor
of the setA, gathering diffracting sites by sublattices, setting 1 to each site as the individual
scattering factor. Recall (Hof [4]) that the square modulus of the structure factor is the Fourier
transform of the autocorrelation measureAgfnormalized by the number of diffracting sites
and not per unit volume. The difference between the two normalizations lies in the point
density of A, which is assumed to be a constant. In the following, we will assumethmets

an average lattice, that is, that there exists 0 such that liny_..o f(N)/N exists and is
equal tox. This means roughly that behaves asZ. The density is ther~1. The structure
factor and the diffracting intensity will arise from a Lebesgue-type decomposition of the sum
SV 5 16¥® . We have, from lemma 1,

N-1 N-1
doadvm=3" Y V| (14)
n=0 n=0

ue,
neN; (u)

SincekA = 27, and thatf (n) — p(n)A = u for a certairu € 2, and a certain (unique) integer
p(n) associated with, it equals

N-1 ) N-1 )
Z Z gklfm—pmal | _ Z Z gku
n=0

ues2; n=0 uesy;
neN; (u) neN; (u)
= ) & x CardN;(u) N [0; N — 1)).

ues2;

Let us now assume thatis such thatA satisfies the assumptigi; ) with well defined
rarefaction laws (equations (1), (12), (13)) forak 2,. Then, from equations (4), (5), (13),
for all large enough intege¥, with g = [ f(N)/A]

~ Z glku (5)(51;\(”))(”) qax(u) + Ao(u) qdz(u) + As(u) qu(u) +.. ) (15)

ues2;
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(Here thed;’s and theA’s are constant, depend upane 2, and are indexed by only.)
SinceA is a Delaunay set, lim_ +oo[ f(N)/A]l/(f(N)/X) = 1 and since we have assumed it
has a density ~* expressed by limi_ + N/f(N), then

. o (u) do(u) d3(u)
~ Z giku [8;“"(”))(@ (;N) + Ay(u) (;N) z + Ag(u) (%N) e ] (16)
ues2;

We are interested in the dominant terms. We now classify the elemerts2; by
lexicographical order in the following way: if andw are any two elements @, , we say
thatv > w if a)(v) > ay(w), or, whena, (v) = ay(w), v < w. Therefore, there exists a
stationary sequence of integexg= 1, ny, ... such that

Upgml > U2 >+ o+ > Upy 1 > Upy > Upgbl > = > Upy1 > Uy > Uyl > =+
with
12 03 (Vng=1) = @3 (v2) = - = 5 (Vn;-1) > % (Vny) = X3 (Vpys1) = -+
T ak(vnz—l) > Ot)h(vnz) = ak(vn2+l) =
and
V1 < VU2 < -+ <Up-1

Upy < Upgal < +o0 < Upp1

corresponding to the jumps of the scaling exponent funetjoon 2;. This sequence is finite

sinceq?; is assumed to be finite. With the convention, for any intéger0, Zﬁj‘l =0, we
obtain
+00 n/+1—1 . o (v Dt»\(vn)
“ 58 e (57 oo
= | = A
= J=m
. d(u) K ds(u)
+) (A <£N> +A (—N) +o0). 17
> (2<u> - 3 (5 an

uel;
(a) The case when mjpg, o, (1) > Max,cq, d2(u): let us denote by

n1—1

ik @ (Vn)) K\ @ (Un))
=3 s (X)

Jj=mn A

thelth coefficient. The indexis called thdevel indexof the scaling exponent. THevell is
constituted byz;+1 —n; elements in the window;, . Denote by,,, the total number of levels.
If ¢, (0) # 0, the intensityly (k) produced byV diffracting sites is scaled witlv as

2
, Iy (k) o e e\ (1)
Jim e = Y ks () (X) — | (02 (18)
=

The scaling exponentZ (v1) — 1 < 1is the best one among all the possibilities. It may occur
thatc, (0) = 0 together with a certain number of the first coefficients, hence diminishing the
scaling exponent of the diffracting intensity.

Definition 4. Under the above assumptions, we say that the spectruxrhals a Bragg peak
atk when2«; (v1) — 1 = 1 and a singular continuous peakawhen2u; (v1) — 1 € ]—1; 1].
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Theorem 1. If there existsl < & < I, such that, forall =0,1,...,h -1

a()=0 and ¢ (h) #0 (29)
then
2

Iy(k mast « @ (v,
jim v Y e SO (5)T] =lami. @)

N—+00 Nz"‘k(v'l/x) 17

Corollary. Under the above assumptions, the scaling exponent of the diffracting intensity, as
a function ofN, is given by
20, (vy,) — 1. (21)
In particular, a Bragg peak at can be obtained if and only if the scaling exponent is 1, that
is if and only if
a,(v,,) =1, thatisfor h=0, np=1 and c,(0) #0. (22)

In this case, the intensity of the Bragg pealcat 2z /A, per diffracting site, is
2

= |, (0)]2. (23)

nl—l

> s (v))

Jj=1

A

lim

N—+o N

Iy (k) _ <K>2

By the one-to-one mapping betweer-J]/2; +1/2] and R/AZ, we transport the
lexicographical classification of the elementof 2, and scaling exponents, (v) to the
torus. The sef2; becomes a finite subset of the tofIgAZ (the internal space), viewed as a
window. A scaling exponent functiom, is then defined on the window which provides the
scaling behaviour of the diffracting intensity. The levels are attached to the one-dimensional
latticesv + AZ, that intersect\, and have rarefaction laws whose dominant scaling exponents
are the same.

(b) The case when mjpg, o, (1) < Max.cq, d2(u): denote by, the smallest positive
integer such that, for ath > ;.. + 1, for allu € Q,, d,,(u) < min,cq, o, (). It may occur
that the secondary terms; (1) ¢“i™ of rarefaction laws becomes prominent in the scaling
behaviour of the diffracting intensity just because all the above exponentials@nsvhich
come from the primary terms, cancel or because the lexicographical order has to take into
account the levels arising from the secondary expongnts) indexed by 1< m < ;... We
prolongate the sequenggeto include all these values of exponents and denote, gathering the
coefficients,

n—1 b;
o= B (3)
J=m
with B; (v;) = 5y vj)or A, (v,) orthe sumof both, for soniep < I..; andb; = a; (v,,)

or d,(v,), for somel, p < ;.. Similarly as in theorem 1 above, we have, with this new
definition of the coefficients; (1),

Theorem 2. If there existd < & < [,,., such that, forall =0,1,...,h —1

=0 and (b)) £0 24)
then
. Iy (k
Jim BB e, (25)

Itis clear that in this case, with secondary terms and exponents, we cannot obtain Bragg peaks.
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4. Thue—Morse sequence

One starts with the alphablet, b}. The sefa, b}* endowed with the operation of concatenation
is the set of all finite words on this alphabet [7]. It is a free monoid generatdd, . We
now define the structural map (substitution rulen {a, b} by ¢ (a) = ab and¢ (b) = ba. By
extension, this map operates @n b}*. We consider the infinite word , iterated froma by

¢ to the right, by iterating . In order to generate a Delaunay set on the positive real line, we
consider that we have two segmeatandb, with a, b > 0 two real numbers; > b, with the
origin of the segment set at zero and the extremity of the segmeatt « (same notation);
we form X, (same notation) to the right of the segmertby iterating¢ and concatenating
segments, up to infinity. The poin&n) will be the extremities and origins of the segments
a andb in the infinite sequence of segmeits,. SetA = {f(n) | n € N}. We keep the same
notations for the letters andb and, respectively, the corresponding segments.nLetN.
Instead of using the substitution ruidor describing the infinite word ,, we use an algebraic
description of the successive points of the Delaunaynset . or A is called the Thue—Morse
sequence (built frona). Thenth-tile ¢, of the Thue—Morse sequence (for instance, [7]) is
given by

th = La+b)+ 3(a — b)(—1)%™

whereS,(n) is the sum of the 2-digits in the binary expansiomoin other terms, if
n=ag+a12t +ay2% +az2%+ ...

then
Sa(n) =ap+ar+ax+az+---

each sum being obviously finite. By conventian= a, that is(—1)%2© = +1.
The aperiodic sequengg&n), n € N, is given by

f© =0

fy= > it

o<m<n—1
Lemma 2. For all » > 1, we have

n—1
fn) = %n(a +b) + %(a —b) Z(_l)Sz(m)

m=0

with

n—1
D (=D% € {~1,0,+1}.

m=0

Proof. If n is even, the first coefficienty in its binary expansion is equal to 0. Therefore,
going fromn ton + 1 leads to just adding 1 8 (n) to find Sy(n + 1). We have:

o if Syo(n) is even, thers>(n + 1) is odd,
o if So(n) is odd, thenS,(n + 1) is even.
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In other terms, iz is even:
(_1)Sz(n)(_1)52(n+l) -1

Now, we prove inductively that, for any € 2N,

n—1
Z(_l)Sz(m) — O
m=0

If n = 2, the result is true. Assume the result ok 2 even. We have

n—1
Z(_l)sz(m) -0
m=0

and

n+l n—1

Z(_l)Sz(m) — Z(_l)Sz(m) + (_l)Sz(n) + (_1)Sg(n+l) — (_l)Sz(n) + (_1)Sz(n+l)

m=0 m=0

but the sum of these two quantities is zero. Hence, the result. O

Proposition 3. With A = a + b, we have2; = {vy = —b, v, = 0,v3 = +b}, ay(—b) =
@3(0) = a3 (+b) = 1, 8.(=b) = 8,(+b) = 5, 8,(0) = Ling=1m =4=npy=nzg=--- =
Card(2;) + 1.

Proof. Since, for eacl € 2N, we have

n—1
(_1)52(WL) =0
0

m=

thena, (0) = 1, §,(0) = 1. Now denote
A” ={ne2N| (-1)%" = —1}
A" ={n e 2N | (=1)%™ = +1).

We have & = A~ U A" as a disjoint union. The injective applicatign: x — 2x + 2
defined on X sendsA~ to A" and A* to A~. Therefore, for the distribution of points
f(n), withn € 1+ 2N, on the sublatticesb + AZ, we havew; (—b) = «;(+b) = 1 and
8, (=b) = 8§, (+b) = % Henceno = 1 with the other values; equal to 4, forj > 1. O

Corollary 1. The intensity per diffracting site of the Thue—Morse sequence, at the wavevector
k = 27 /(a + b), is given by

1 2nhb
— |1+ cos
4 a+b

Proof. From theorem 1, we have= 1(a +b). Hence,

2

N—+oo

2
lim Iy (&) = (@+b)/2 |le2in<—b>/<a+h) +1 + Lg2in(b)/(@rb) |2
a+b 2 2

hence the result. O



Generalized Meyer sets and Thue—Morse quasicrystals 6455

The rarefaction laws at infinity of the affine latticest (a + b)Z, with v € Q.+, are
reduced to their dominant term$ % ¢ or 1 x ¢ with scaling exponents all equal to 1.
The Thue—Morse sequence satisfies the assumpligrof definition 2 forA = a + b. The
dominant scaling exponent does not change when we now consider the rarefaction laws of
affine latticesw + %Z, wherem is an arbitrary positive integer. It remains equalto 1. These
rarefaction laws (calculation of the coefficiefn.s» (w)) can be easily deduced from the
previous ones by grouping sites according to the new periodicityb) /m.

Corollary 2. The spectrum of the Thue—Morse sequence contains a lattice of Bragg peaks at
integral multiples oft = 27 /(a + b) and the diffracting intensity per site &in, for m an
arbitrary positive integer, is given by

7|1+ cos(kmb)|?.

Proof. We just sketch the proof and refer to [21] for complete details.&e an arbitrary
positive integer and,, = (a + b)/m. We have

K o m

Am 2

and, withv € @, , for m odd, there exists an integgrsuch that

m

8, v—322j—m+1 8
lim A,q( 2( J )) —m lim Am,q(v)
q—+oo q q—+oo q
for m even, there exists an integgrsuch that
8, (v—22j = m )
||m A,q( 2( J )) —m ||m Am,q(v) )
q—+oo q q—+o0 q

Therefore, going fronf2, to €2, , leads to dividing all the coefficienss (v) by m. We have

. IN(km) 1 2| 1 ikm(—b 1 ikm (+b 2
||m = (im) %el =D +1+ Eel +5)

N—+o0

hence the result. O

This result was also obtained by Kolar al [18] for substitutional systems of length 2
formed with two tiles. In Gaehler and Klitzing [19], the situation is more general. Other non-
trivial Bragg peaks are reported in [18], which can also be studied by the present Lebesgue
decomposition of the structure factor.

We will show in another contribution [21, 25] that the rarefaction laws of the affine lattices
of period(p/s)(a + b) which intersect the Thue—Morse sequence, wheaads are positive
integers, are given by-rarefaction laws [24]. They are basically of the type

Ar(u) gt + Ax(q, u) g™

whereA,(g, u) is a bounded fractal (continuous nowhere-differentiable) function depending
upon logN / log 4, where thel,(1)’s are all closely related to log/(p — 1) log 2. It happens
thatc; (0) generally cancels for such values of periods. For instance With3(a +b), p =
3, s =1,k =2n/\,
Q3g+ry = {—a —2b, —a — b, —a, —b, 0, +b, +a, +a + b, +a + 2b}
= (—(a+b) +Qqp) U (Qg4p) U (+(a + b) + Q)
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and the sum
C)J(O) — %eZin(—a—Zb)/(S(aﬂz)) + %eZin(—a—b)/(3(u+b))

+%e2i7t(—a)/(3(a+h)) + z13e2in(—b)/(3(a+b)) + % + %eZin(+b)/(3(a+b))
+%eZi”(+")/(3(“+b)) + %e2i7r(+a+b)/(3(a+b)) + %ezm(+a+2b)/(3(a+b)) -0

This cancels the contribution of the dominant terms, extinguishing the possible Bragg peak at
k’. There appears a singular continuous peak af well defined exponentf exponents)

with a coefficient which looks like a constant but depends fractally. athe scaling exponent

of the diffracting intensity is dog 3/log 4) — 1 in this case [21, 25].

5. Generalized Meyer sets

We will slightly change the axiomatics of CPS in order to keep at the same time the Thue—Morse
sequence on the real line and the relevant rarefaction laws of the affine lattices which intersect
A. This can be formulated within the context of Meyer sets, as generalized Meyer sets under
generalized cut-and-project schemes (generalized CPS), what will be explained below. First,
we recall basic facts of Meyer’s constructions with locally compact Abelian groups, following
Meyer [1], Moody [2] and Baake and Moody [14].

Definition 5 (Classical CPS: cut-and-project scheme)Let G andH be two locally compact
Abelian groups, and; : G x H — G, : G x H — H the canonical projections. We say
thatG producedH if there exists

(A.9) aclosed subgroup of G x H satisfying:

(A.a) Lisdiscrete inG x H

(A.b) L is relatively dense itz x H [property H-(D2)].

(A.c) LN {0} x H = {0, 0} where 0 denotes the neutral elementofrespectivelyH .
(A.d) m(L) is dense inH.

The structure of locally compact Abelian groups is well known. A locally compact group
G contains an open (also closed) subSetof the typeR™ x K such thatK is a compact in
the infinite torus'™ and that the quotien/ G is a discrete group. In particulak, may be a
finite-dimensional torugR/Z)', for! > 1 any integer. To the knowledge of one of the authors,
for all the applications concerning the crystallography and structure models of quasicrystals,
particularly icosahedral quasicrystals and decagonal quasicrystals, only the Euclidean part was
used up to now in cut-and-project schemes. Some recent results makepsséiofinternal
spaces [15] in the spirit of the previous works of Meyer [1] and Schreiber [16], but they do not
seem to be used as such by experimentalists.
The normal CPS is a collection of mappings and Euclidean spaces
R" & R xR D R”
U
L

whereL ¢ R"™ x R" is a lattice, 71y and =, the orthogonal projection mappings onto
Im(r1) := the physical space- R™, and In(x») := the internal space- R"”. L is assumed
such that withL the physical spaggroduceshe internal spaces, (L) is dense ilR" andm|;,

is injective. LetY := m;(L). The application

() =m0 (ml) ™t
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is well defined orir’ and has values in the internal space. Itis extended o@thpanQY of

Y. In the context of structure models of quasicrystals, we normally choose lattiadsch

are invariant under a finite symmetry group (the icosahedral group, cyclic groups, etc) and
one or several windows [2, 14] in the internal sp&?eto select points of.. If W c R" is a
window, it satisfies the following assumptions:

W1. The windowW c R”" is compact.
W2. W = int(W) # ¢.

W3. The boundary W of W has Lebesgue measure 0 and a model set is given by

A={xeYTx*eW}cCR".

Some properties of model sets are the following:
M1. A is a Delone set [property HJ: it is relatively dense and uniformly discrete.
M2. A is aMeyerset: A is discrete and relatively dense and there exists a finit& satch

thatA — A C A+ F. Actually the class of model sets is strictly included in the class of Meyer
sets.

M3. A has a well defined point densitiy(Rogers [17]), i.e. the following limit:

#(A N B(O, R))

d= Ilim
R VOI(B(O. R))

exists, whereB (0, R) is the ball centred at the origin of radi& > 0 in R™. Its volume is
a™2R™ /T (5 (m + 2)).
M4. A has a well defined spectrum composed of Bragg peaks.

We now show that the toric pai®/Z) , with/ = 1, in the internal space, plays naturally a
partin the representation of the Thue—Morse sequence for frequerstied that?, is finite.

Lemma 3. The Thue—Morse sequence satisfies the properties M1-M3.
Proof. Clearly, M1 is satisfied forx. The fact that M2 is satisfied follows from lemma 2

with F := {0, &(a — b)/2, £(a — b), £3(a — b)/2} since, for anyn > n > 0, we have
f(@m)— f(n) — f(m —n) € F. Property M3 is satisfied since

Ay = 3(@+Db)Z
is the average lattice of. There is one point ol per cell ofA,, and the point density of

the Thue—Morse sequence is equal 2+ b). |

Proposition 4. The Thue—Morse sequence is harmonious.
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Proof. This is a consequence of lemma 3 and theorem X in chapter Il in Meyer [1]. O

We will analyse elsewhere characteristics of the Thue—Morse sequence, with the notions
of duality following this proposition.

Now, since it is well known that the Thue—Morse sequence has a spectrum which is not
only composed of Bragg peaks, but possesses a non-trivial singular continuous component
(for instance, Kolaet al [18], Queffelec [8], Kakutani [22], Mahler [23]), we should remove
some assumptions from the normal cut-and-project scheme in order to obtain more general
spectra than Bragg spectra, as given by M4. The Thue—Morse sequence is a Meyer set which
is not a model set. We know that there exists a model set which contains it strictly [2]; here,
we will not use another CPS to obtain it. On the contrary, we invoke a new scheme which
looks like the classical CPS. For this, we will only change the axiomatics of the CPS in a
minimal way, sticking to the formalism of the previous paragraphs. We will have to join to this
geometrical approach and framework the need to define simultaneously scaling exponents for
the diffracting intensity function, for the singular continuous component of the spectrum. We
have then to include the finite set of all lattices that intergeat a non-empty way together
with their rarefaction laws, the periagdbeing given.

We suggest the following scheme:

S1.TakeH = R/AZthe one-dimensional torus, as the internal space&and R the physical
space.
S2. Let us denote by
ma 3@ +b)N — A
the bijective mapping from the average lattisg, N R* to A such that, for any € N,
fn) =7z (3(a+byn).
We have, for any integer
[mA(3(a +b)n) — 3n(a+b)| < 3(a —b)

and we denote bygl its inverse mapping defined on the set of the elemgfits)/n € N},
is valued in the average latticg,,. Call u an element in}x/2; +1/2[ andu its canonical
image inH.

Take

_ _ 2x
L = {(x, u) € G x Hlx € Ayy,usuchthat € Q;,u = f(Tb>(moduI0/\Z)}.
a

Lemma 4. L is discrete inG x H.

S3. Let us denote byt : R — R any strictly increasing function satisfying

TAlAg = A

We can take it to be continuous but there isanpriori reason to do so. Then we have a
new CPS consisting of a collection of spaces and mappings:

TTAOTTY

R ¢ R x R/AZ 2> R/AZ
U
L.
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Lemma 5. 7, oy is uniformly bounded with respect 1q in the sense that its restriction to
L satisfies

174 0 malill = SUPITA © 1(2) — ma(@)] < 3(a —b).
zZ€

We see thatm, o m1)|L = (4 o 71)|L IS injective, and that the selection mode on the
closed subset is not based on a projection mode but czoagruent mode througfi and the
period A which is such thaf2; is finite. The fact that the windo®,, is finite is equivalent to
saying that its Hausdorff dimension in the internal space is zero. Cléadylosed inG x H,
and, since we have assumed tif&a0) = 0, the properties (A.a), (A.b), (A.c) in definition 4
are satisfiedL is a priori not a subgroup itG x H and assumption (A.s) has no reason to be
satisfied.,(L) is discrete inH by construction. We have @)* operation as in the normal
CPS:

() =m0 ((rpom)|) i A — H=R/Z.

S4. We can now choose windows as in the normal CPSV ifs a window, W is a subset

of {u € R/Z|u € Q,}. Itis a compact set for which the boundary has Lebesgue measure 0
(properties W1 and W3 are satisfied). It is not the adherence of its interior, and property W2
is not satisfied.

The generalized Meyer sets we can form from the Thue—Morse seqyfenith respect
to the frequency. such that?; is finite are given, similarly to the normal CPS, by

Aw ={x € Alx* € W}.

Of course, the property M4 is no longer valid and the spectrum displays more peaks than just
Bragg peaks. If the window is maximal, we obtain the full Thue—Morse sequence as defined
algebraically byf. If the window is smaller and contains only some points inside the torus
R/AZ, we obtain a subset of the Thue—Morse sequence and we have only to consider, for the
scaling exponent of the diffracting intensity of the reduced system of points to consider the
values of thdevelsfor the elements which are selected by the window. We have seen that the
scaling exponents and the rarefaction laws (rates of occupancy at infinity) are attached to the
affine latticesy + AZ € H = R/AZ and can be classified according to a lexicographical order
and that the dominant scaling exponent is given by equation (21).

S5. The question of whether there exists a substitute for (A.s), that is, an algebraic structure
on L can be partially overcome by recent results obtained by Gazeau and Miekisz [20] who
have proved that there exists a canonical symmetry group on the Thue—Morse quasicrystal.
By the (-)*-operation, this can be reported to the elements of the window, and globally on
However, the operations of this group have no reason to be stable by classes inside the toric
internal space. So, this operation is not well defined and cannot be used in this case.
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