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Abstract. We show that a one-dimensional aperiodic Delaunay set of points3 together with
the Fourier transform of its autocorrelation measure (square modulus of its structure factor) at a
wavevectork = 2π/λ, can be associated with a generalized Meyer set under some assumptions:
(a) that the internal space is toric,R/λZ, with a window, assumed finite, equal to the set of affine
lattices of periodλ which have a non-empty intersection with3 and rarefaction laws at infinity,
a selection rule based on a congruence mode with respect toλ; (b) a scaling exponent function,
having values in [0; 1], can be uniquely defined on the window from rarefaction laws, which is
related to the scaling properties of the intensity function; (c) the projection mappings are adapted
to the average lattice of3 and are not orthogonal. The case of Bragg peaks of the Thue–Morse
sequence spectrum is developed explicitly in this context.

1. Introduction

The notion of amodel setdeveloped by Meyer [1, 2] in the context of cut-and-project schemes
(CPSs), in the 1970s, has been applied successfully and extensively to the study of the structure
of quasicrystals for more than ten years. Its simplicity, which is expressed by the existence of
a suitable lattice in a periodization space, suitable windows in the internal space and its power
for refining structure models [3] make model sets new exciting tools for studying aperiodic
sets of points modelling aperiodic crystals and particularly quasicrystals.

However, the constructions of Meyer were more general. They were developed in the
context of locally compact Abelian groups, that is finite-dimensional Euclidean spacesRm,
compact subgroups of the infinite torusT∞, discrete or finite groups, and so on (Rudin [12],
chapter 2) and for classes of Delaunay sets greater than the class of model sets; whereas the
applications to quasicrystals are only using Euclidean spaces and model sets. Here, we are
interested in the fundamental question of understanding when toric internal spaces appear
naturally in the study of general Delaunay point sets, for what purposes they may be used,
which characteristics possess windows. For this, we assume that these Delaunay point sets
still lie in a Euclidean space.

In the following, given a Delaunay set3, we claim that a toric internal space is important
for describing the behaviour of the diffracting intensity function of3 and for describing its
scaling exponents. We show that these scaling exponents arise from the rarefaction laws, at
infinity, of distributions of points on affine lattices intersecting3 when some assumptions are
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satisfied. The diffracting intensity function of3 is expressed by the Fourier transform of the
autocorrelation measure (which is the square modulus of its structure factor, normalized by
the number of diffracting sites). Delaunay sets3 will lie on the positive real line for the sake
of simplicity.

Indeed, when aperiodic point sets are no longer quasiperiodic, the search for sets
supporting the components of the spectrum, Bragg, singular continuous and absolutely
continuous becomes more difficult. Model sets formed bynormal cut-and-project schemes
with Euclidean spaces as physical space and internal space, give only pure Bragg spectra [4].
Many other possibilities could of course occur, and the full generality of the theory calls for new
concepts to deal with scaling exponents associated with the singular continuous components
of the spectra.

Hof [4] has developed a mathematical model of diffraction theory adapted to any Delaunay
set inRn, n > 1. He shows that knowledge of the autocorrelation measure of this set
is basic since it gives rise, by its Fourier transform, to the diffraction patterns of the set,
known to physicists. This Fourier transform is a positive measure (Bochner’s theorem). For
instance, it can be computed directly by hand in the case of interpenetratingG-clusters, where
G is a finite non-crystallographic symmetry point group and whenG-clusters are arranged
quasiperiodically or not [5]. When arranged quasiperiodically in a suitable way, the system
of interpenetratingG-clusters is a quasicrystal [6], and this approach is another view of the
diffraction of the quasicrystal through the existence of the local clusters of atoms it contains.

Of importance for an arbitrary Delaunay set3 is the localization and the search for Bragg
peaks and of peaks belonging to the singular continuous component of the spectrum of3. This
can be carried out by a suitable Fourier–Bohr analysis [7–9], up to some limit, by the average
unit cell approach [10, 11], typical of finite systems. Here, we propose a different scheme. We
fix a certain wavevectork, that is a periodλ = 2π/k > 0 and want to understand the scaling
properties of the intensity atk. We consider all the affine lattices inR of periodλwhich have a
non-empty intersection with3 and assume they are a finite number of them. This is expressed
by the finiteness of�λ (section 2), that is the fact that the window�λ has a Hausdorff measure
equal to zero (section 5). The second assumption is about rarefaction laws at infinity. Let
v +λZ any affine lattice intersecting3. If q denotes the number of adjacent cells of this lattice
counted from the origin, we assume that the number of points of(v + λZ) ∩3 within theseq
cells is given by, whenq goes to infinity,

A1(q) q
αλ(v) +A2(q) q

d2 +A3(q) q
d3 + · · · (1)

where theAj(q)’s are bounded, 1> αλ(v) > d2 > d3 > · · · > 0. We assume a little more,
that theAj(q)’s are all constant. We writeA1(q) = δ(αλ(v))λ in section 2. Of course, all the
Aj(q)’s and thed2’s depend onv. Such an expression is called a rarefaction law of the affine
lattice v + λZ at infinity. Under these two assumptions, thev’s are attributed a dominant
coefficientαλ(v) and are classified by lexicographical order (section 3) in ]−λ/2;+λ/2]. We
claim that allv’s having the maximal value ofαλ(v) intervene in the diffraction process when
some combinations of exponentials do not cancel (theorem 1). The scaling exponent of the
diffracting intensity is then directly 2αλ(v) − 1. When some combinations of exponentials
cancel, the scaling exponent becomes one of thedj ’s, j > 2 (theorem 2). For this reason, we
call dj the (fractal) levels of the scaling exponent function. The internal space, toric, isR/λZ
and the window is the finite formal external sum of affine lattices of given periodλ which
intersect3, represented by thev’s (section 5).

The structure factor of3 gives the Fourier transform of its autocorrelation measure. We
allow a suitable Lebesgue decomposition of it according to the levels of the scaling intensity
function (section 3) to show that the fractal scaling exponents of the intensity which appear by
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this method are correlated to the fractal rates of occupancy at infinity of these affine lattices that
intersect3, that is their rarefaction laws at infinity. The case of the Thue–Morse quasicrystal
is presented in this context for certain values ofλ. We know that the Thue–Morse sequence is
not a model set since its spectrum has a non-trivial singular continuous component [22, 23]. It
is a Meyer set, a harmonious set (sections 4 and 5). Here, we investigate Bragg peaks by the
present method, leaving singular continuous peaks for another contribution [21, 25]. Figures
showing the scaling behaviour of the diffracting intensity of the Thue–Morse sequence are
reported in Wolnyet al [13].

The present contribution reports (in section 5) a discussion of the axiomatics of the cut-
and-project scheme in order to include, for an arbitrary Delaunay set satisfying the above
assumptions, a toric internal space, scaling exponents associated with elements of windows,
when windows are finite, scaling properties for the diffracting intensity. We show that the
removal of one axiom is required for such a generalization of the CPS to allow more general
spectra than only pure Bragg spectra. It enables one to specify the geometrical origin of the
scaling exponents of the diffracting intensity. We examplify some results about the Thue–
Morse in this context.

2. Definitions

In the following, we will consider a sequence of points, as an image of a functionf , satisfying
the following assumptions:

(H). f is a strictly increasing function defined onN taking values inR+, with f (0) = 0. The
set{f (n)/n ∈ N} is denoted3 or3f . It represents an infinite sequence of points on the real
line, satisfying the crystallographic hypothesis (Delaunay):

(D1) (3 is uniformly discrete). ∃r > 0 such that, for alln ∈ N, each interval
]−r + f (n);+r + f (n)[ contains only the pointf (n) of the sequence,

(D2) (3 is relatively dense).∃R > 0 such that∀x > 0, ∃n ∈ N such that|x − f (n)| < R.

Let λ > 0 a real number, and

�λ = {u ∈ ]−λ/2;+λ/2]/∃n ∈ N, f (n) = u + pλ for a certain integerp = p(n)}
the set of values of the sequence3 = {f (n)} moduloZλ. Denote

�+
λ = �λ ∩ R+∗ �−λ = �λ ∩ R−.

For eachu ∈ ]−λ/2;+λ/2], we set

Nλ(u) = {n ∈ N/∃p ∈ N,−pλ + f (n) = u}.
By definition, all the setsNλ(u) are empty whenu ∈ ]−λ/2;+λ/2]\�λ, and non-empty when
u ∈ �λ.
Lemma 1. The following union is disjoint:

N =
⊔
u∈�λ

Nλ(u). (2)
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This lemma gives a partitioning of the setNwith respect to the affine latticesu + λZ, of period
λ, which have a non-empty intersection with3.

Some of these lattices are strongly occupied by the points of3 and others very few. In
order to understand their role in the diffraction process of3f , we introduce their asymptotic
rates of occupancy at infinity and fractional exponents. This will specify canonically the
dominant terms ‘A1(q)q

αλ(v)’ of their rarefaction laws at infinity.
For anyλ > 0, q ∈ N, N an integer> 1 andv ∈ ]−λ/2;+λ/2], we call

Pλ(q) = {n ∈ N/f (n) ∈ [0; qλ]} (3)

and

δλ,N,q(v) = #{n ∈ [0;N − 1] | n ∈ Nλ(v) ∩ Pλ(q)}. (4)

We denote by #W or by Card(W ) the number of elements of an arbitrary finite setW .
Whenλ, q, v are fixed, the sequenceN → δλ,N,q(v) is stationary: the first value ofN when
this sequence reaches the plateau allows one to calculateq from f . We have

f (N − 1) 6 qλ < f (N) (5)

andq = [f (N)/λ], the greatest integer less thanf (N)/λ. We denote by

δλ,q(v) = lim
N→∞

δλ,N,q(v) = #(Nλ(v) ∩ Pλ(q)). (6)

For pairsq,N such that equation (5) is valid, we haveδλ,N,q(v) = δλ,q(v). For each
v ∈ �λ, we now consider the sets of exponents{

β ∈ [0; 1]
/

lim inf
q→∞

δλ,q(v)

qβ
> 0

}
(7)

and {
γ ∈ [0; 1]

/
lim sup
q→∞

δλ,q(v)

qγ
< +∞

}
. (8)

SinceNλ(v) 6= ∅, the first set of exponents is not empty: it contains at leastβ = 0. We call

αλ(v) = sup

{
β ∈ [0; 1]

/
lim inf
q→∞

δλ,q(v)

qβ
> 0

}
. (9)

Similarly, the second set of exponents above is not empty since it containsβ = 1: this comes
from the fact that #(Nλ(v) ∩ Pλ(q)) 6 q. Let us denote

αλ(v) = inf

{
γ ∈ [0; 1]

/
lim sup
q→∞

δλ,q(v)

qγ
< +∞

}
. (10)

Proposition 1. For all v ∈ �λ, we have

06 αλ(v) 6 αλ(v) 6 1. (11)

Proof. If αλ(v) = 0 or if αλ(v) = 1, the proposition is proved. Assumeαλ(v) > 0 and
06 αλ(v) < αλ(v) 6 1. Then there exist two real numbersβ, β ′ such that

αλ(v) < β ′ < β < αλ(v).

We haveαλ(v) > β − β ′ > 0, hence lim infq→+∞[δλ,q(v)/qβ−β
′
] > 0. Let us denote

by L this lim inf. It is strictly positive and there exists a subsequence{qi/i ∈ N} such
that limi→+∞[δλ,qi (v)/q

β−β ′
i ] = L. Therefore, limi→+∞[δλ,qi (v)/q

β

i ] = lim i→+∞ Lq
β ′
i
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and tends to infinity. However,αλ(v) < β and hence limi→+∞[δλ,qi (v)/q
β

i ] 6
lim supq→+∞[δλ,q(v)/qβ ] < +∞. A contradiction. �

We will be mainly interested in rarefaction laws with the highest possible well defined
fractal exponents in the dominant terms.

Definition 1. For all v ∈ �λ, we define an average sublattice inv of periodλ, denoted by
v +Zλ, of the sequence3 = {f (n)}, as an affine lattice of periodλwhich containsv and such
that

αλ(v) = αλ(v) = 1.

Definition 2. We say that3 satisfies assumption (Fλ) when, (a) for allv ∈ �λ,αλ(v) = αλ(v),
and when (b) for allv ∈ �λ, lim inf q→∞[δλ,q(v)/qαλ(v)] and lim supq→∞[δλ,q(v)/qαλ(v)] are
strictly positive, exist and are equal. In this case, we denote

αλ(v) = αλ(v) = αλ(v) (12)

and

δ
(αλ(v))
λ (v) = lim inf

q→∞
δλ,q(v)

qαλ(v)
= lim sup

q→∞
δλ,q(v)

qαλ(v)
. (13)

In particular, when

αλ(v) = 1

we call this common limitδλ(v). It is by definition the average number of points of the sequence
3 = {f (n)} per cell of the average sublatticev + Zλ.

The notation of equation (13) is such that the quantity(αλ(v)) is a superscript and not an
exponent. Whenαλ(v) = 1, the occupancy of the latticev + Zλ is fairly regular. In this case,
we always haveδλ(v) ∈ [0; 1]. The occupancy is fractional.

Whenαλ(v) = αλ(v) = 1 andδλ(v) = 1, it means that we have exactly one point of the
sequence, on average, congruent tov, per cell of the average sublatticev +Zλ. This does not
mean that we have a full occupancy of the latticev + Zλ. Owing to the assumption (H-D2),
the number of successive cells of the latticev + Zλ receiving no points of the sequence at all
cannot be arbitrarily large.

Definition 3. A sequence3 = {f (n)} such that�λ is finite and, for allv ∈ �λ,
αλ(v) < 1

is called singular inλ.

The terminology is reminiscent of the fact that a Bragg peak cannot exist atk = 2π/λ
when this condition is fulfilled, as will be shown below.

Conversely, for sequences of points that are subsets of lattices, we have the following
result.

Proposition 2. If 3 = {f (n)} is a subset ofZ2r∩N, r > 0, except a finite number of elements
eventually, then

(a) if λ = 2r, then�λ = {0}. The latticeZ2r is the average sublattice inv = 0 of period2r
of the sequence{f (n)}, with δλ(0) = 1,

(b) if λ is such thatλ/2r > 0 can be written ast/w ∈ Q, with t, w ∈ N \ {0}, gcd(t, w) = 1,
then�λ is the set of residues of0, 1× 2r, 2 × 2r, . . . , (t − 1) × 2r ∈ ]−λ/2;+λ/2]
moduloZλ, and, for allv ∈ �λ, αλ(v) = αλ(v) = 1, with δλ(v) = 1/w,
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(c) if λ is such thatλ/2r 6∈ Q, then�λ is the uniformly dense set of residues ofZ2r in
]−λ/2;+λ/2] moduloZλ andαλ(v) = αλ(v) = 0 for all v ∈ �λ.

From case (b), we see that each timeλ is an integral multiple of 2r, thenw = 1, i.e. each
lattice v + Zλ is an average sublattice inv, for all v ∈ �λ. Such collections of points are
singular for anyλ which are incommensurate with the period 2r, from (c).

Corollary. For any Delaunay sequence3 = {f (n)}, if rb denotes the maximal bound ofr
such that the intervals]−r +f (n);+r +f (n)[, n ∈ N, are mutually disjoint, then the sequence
3 = {f (n)} is such that for anyλ < 2rb and anyv ∈ ]−λ/2;+λ/2], we haveδλ(v) ∈ [0; 1[
if it exists.

The value 1 cannot be reached in this case, sites being too dispersed on each affine lattice
v + Zλ, v ∈ �λ.

3. Fourier transform decomposition by sublattices

Let λ > 0 and assume that�λ is finite. Letk = 2π/λ be the corresponding wavevector and
N > 1 be an integer. We will make a Lebesgue-type decomposition of the structure factor
of the set3, gathering diffracting sites by sublattices, setting 1 to each site as the individual
scattering factor. Recall (Hof [4]) that the square modulus of the structure factor is the Fourier
transform of the autocorrelation measure of3, normalized by the number of diffracting sites
and not per unit volume. The difference between the two normalizations lies in the point
density of3, which is assumed to be a constant. In the following, we will assume that3 has
an average lattice, that is, that there existsκ > 0 such that limN→+∞ f (N)/N exists and is
equal toκ. This means roughly that3 behaves asκZ. The density is thenκ−1. The structure
factor and the diffracting intensity will arise from a Lebesgue-type decomposition of the sum∑N−1

n=0 1 eikf (n). We have, from lemma 1,

N−1∑
n=0

1 eikf (n) =
∑
u∈�λ

 N−1∑
n=0

n∈Nλ(u)

eikf (n)

. (14)

Sincekλ = 2π , and thatf (n)−p(n)λ = u for a certainu ∈ �λ and a certain (unique) integer
p(n) associated withn, it equals

=
∑
u∈�λ

 N−1∑
n=0

n∈Nλ(u)

eik[f (n)−p(n)λ]

 =∑
u∈�λ

 N−1∑
n=0

n∈Nλ(u)

eiku


=
∑
u∈�λ

eiku × Card(Nλ(u) ∩ [0;N − 1]).

Let us now assume thatλ is such that3 satisfies the assumption(Fλ) with well defined
rarefaction laws (equations (1), (12), (13)) for allv ∈ �λ. Then, from equations (4), (5), (13),
for all large enough integerN , with q = [f (N)/λ]

≈
∑
u∈�λ

eiku
(
δ
(αλ(u))
λ (u) qαλ(u) +A2(u) q

d2(u) +A3(u) q
d3(u) + · · ·). (15)
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(Here thedj ’s and theAj ’s are constant, depend uponu ∈ �λ and are indexed byu only.)
Since3 is a Delaunay set, limN→+∞[f (N)/λ]/(f (N)/λ) = 1 and since we have assumed it
has a densityκ−1 expressed by limN→+∞N/f (N), then

≈
∑
u∈�λ

eiku

[
δ
(αλ(u))
λ (u)

(κ
λ
N
)αλ(u)

+A2(u)
(κ
λ
N
)d2(u)

+A3(u)
(κ
λ
N
)d3(u)

+ · · ·
]
. (16)

We are interested in the dominant terms. We now classify the elementsu ∈ �λ by
lexicographical order in the following way: ifv andw are any two elements of�λ, we say
that v � w if αλ(v) > αλ(w), or, whenαλ(v) = αλ(w), v 6 w. Therefore, there exists a
stationary sequence of integersn0 = 1, n1, . . . such that

vn0=1 � v2 � · · · � vn1−1 � vn1 � vn1+1 � · · · � vn2−1 � vn2 � vn2+1 � · · ·
with

1> αλ(vn0=1) = αλ(v2) = · · · = αλ(vn1−1) > αλ(vn1) = αλ(vn1+1) = · · ·
· · · = αλ(vn2−1) > αλ(vn2) = αλ(vn2+1) = · · ·

and

v1 < v2 < · · · < vn1−1

vn1 < vn1+1 < · · · < vn2−1

...

corresponding to the jumps of the scaling exponent functionαλ on�λ. This sequence is finite
since�λ is assumed to be finite. With the convention, for any integeri > 0,

∑ni−1
ni
= 0, we

obtain

≈
+∞∑
l=0

[
nl+1−1∑
j=nl

eikvj δ
(αλ(vnl ))

λ (vj )
(κ
λ

)αλ(vnl )]
(N)αλ(vnl )

+
∑
u∈�λ

eiku

(
A2(u)

(κ
λ
N
)d2(u)

+A3(u)
(κ
λ
N
)d3(u)

+ · · ·
)
. (17)

(a) The case when minu∈�λ αλ(u) > maxu∈�λ d2(u): let us denote by

cλ(l) =
nl+1−1∑
j=nl

eikvj δ
(αλ(vnl ))

λ (vj )
(κ
λ

)αλ(vnl )
the lth coefficient. The indexl is called thelevel indexof the scaling exponent. Thelevel l is
constituted bynl+1− nl elements in the window�λ. Denote byltop the total number of levels.
If cλ(0) 6= 0, the intensityIN(k) produced byN diffracting sites is scaled withN as

lim
N→+∞

IN(k)

N2αλ(v1)−1
=
∣∣∣∣∣n1−1∑
j=1

eikvj δ
(αλ(v1))
λ (vj )

(κ
λ

)αλ(v1)

∣∣∣∣∣
2

= |cλ(0)|2. (18)

The scaling exponent 2αλ(v1)−16 1 is the best one among all the possibilities. It may occur
thatcλ(0) = 0 together with a certain number of the first coefficients, hence diminishing the
scaling exponent of the diffracting intensity.

Definition 4. Under the above assumptions, we say that the spectrum of3 has a Bragg peak
at k when2αλ(v1)− 1= 1 and a singular continuous peak atk when2αλ(v1)− 1 ∈ ]−1; 1[.
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Theorem 1. If there exists16 h < ltop, such that, for alll = 0, 1, . . . , h− 1

cλ(l) = 0 and cλ(h) 6= 0 (19)

then

lim
N→+∞

IN(k)

N2αλ(vnh )−1
=
∣∣∣∣∣nh+1−1∑
j=nh

eikvj δ
(αλ(vnh ))

λ (vj )
(κ
λ

)αλ(vnh )∣∣∣∣∣
2

= |cλ(h)|2 . (20)

Corollary. Under the above assumptions, the scaling exponent of the diffracting intensity, as
a function ofN , is given by

2αλ(vnh)− 1. (21)

In particular, a Bragg peak atk can be obtained if and only if the scaling exponent is 1, that
is if and only if

αλ(vnh) = 1, that is for h = 0, n0 = 1 and cλ(0) 6= 0. (22)

In this case, the intensity of the Bragg peak atk = 2π/λ, per diffracting site, is

lim
N→+∞

IN(k)

N
=
(κ
λ

)2
∣∣∣∣∣n1−1∑
j=1

eikvj δλ(vj )

∣∣∣∣∣
2

= |cλ(0)|2 . (23)

By the one-to-one mapping between ]−λ/2;+λ/2] and R/λZ, we transport the
lexicographical classification of the elementsv of �λ and scaling exponentsαλ(v) to the
torus. The set�λ becomes a finite subset of the torusR/λZ (the internal space), viewed as a
window. A scaling exponent functionαλ is then defined on the window which provides the
scaling behaviour of the diffracting intensity. The levels are attached to the one-dimensional
latticesv + λZ, that intersect3, and have rarefaction laws whose dominant scaling exponents
are the same.

(b) The case when minu∈�λ αλ(u) 6 maxu∈�λ d2(u): denote bylsec the smallest positive
integer such that, for allm > lsec + 1, for all u ∈ �λ, dm(u) < minu∈�λ αλ(u). It may occur
that the secondary termsAj(u) qdj (u) of rarefaction laws becomes prominent in the scaling
behaviour of the diffracting intensity just because all the above exponential sumscλ(l), which
come from the primary terms, cancel or because the lexicographical order has to take into
account the levels arising from the secondary exponentsdm(u) indexed by 16 m 6 lsec. We
prolongate the sequencenl to include all these values of exponents and denote, gathering the
coefficients,

cλ(l) =
nl+1−1∑
j=nl

eikvj Bj (vj )
(κ
λ

)bj
withBj(vj ) = δ(αλ(vnl ))λ (vj )orAp(vg)or the sum of both, for somel, p 6 lsec; andbj = αλ(vnl )
or dp(vg), for somel, p 6 lsec. Similarly as in theorem 1 above, we have, with this new
definition of the coefficientscλ(l),

Theorem 2. If there exists16 h < lsec, such that, for alll = 0, 1, . . . , h− 1

cλ(l) = 0 and cλ(h) 6= 0 (24)

then

lim
N→+∞

IN(k)

N2bnh−1 = |cλ(h)|2 . (25)

It is clear that in this case, with secondary terms and exponents, we cannot obtain Bragg peaks.
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4. Thue–Morse sequence

One starts with the alphabet{a, b}. The set{a, b}∗ endowed with the operation of concatenation
is the set of all finite words on this alphabet [7]. It is a free monoid generated by{a, b}. We
now define the structural map (substitution rule)ζ on {a, b} by ζ(a) = ab andζ(b) = ba. By
extension, this map operates on{a, b}∗. We consider the infinite wordX∞ iterated froma by
ζ to the right, by iteratingζ . In order to generate a Delaunay set on the positive real line, we
consider that we have two segmentsa andb, with a, b > 0 two real numbers,a > b, with the
origin of the segmenta set at zero and the extremity of the segmenta at a (same notation);
we formX∞ (same notation) to the right of the segmenta by iteratingζ and concatenating
segments, up to infinity. The pointsf (n) will be the extremities and origins of the segments
a andb in the infinite sequence of segmentsX∞. Set3 = {f (n) | n ∈ N}. We keep the same
notations for the lettersa andb and, respectively, the corresponding segments. Letn ∈ N.
Instead of using the substitution ruleζ for describing the infinite wordX∞, we use an algebraic
description of the successive points of the Delaunay set3. X∞ or3 is called the Thue–Morse
sequence (built froma). Thenth-tile tn of the Thue–Morse sequence (for instance, [7]) is
given by

tn = 1
2(a + b) + 1

2(a − b)(−1)S2(n)

whereS2(n) is the sum of the 2-digits in the binary expansion ofn. In other terms, if

n = a0 + a121 + a222 + a323 + · · ·
then

S2(n) = a0 + a1 + a2 + a3 + · · ·
each sum being obviously finite. By convention,t0 = a, that is(−1)S2(0) = +1.

The aperiodic sequencef (n), n ∈ N, is given by

f (0) = 0

f (n) =
∑

06m6n−1

tm.

Lemma 2. For all n > 1, we have

f (n) = 1
2n(a + b) + 1

2(a − b)
n−1∑
m=0

(−1)S2(m)

with

n−1∑
m=0

(−1)S2(m) ∈ {−1, 0,+1}.

Proof. If n is even, the first coefficienta0 in its binary expansion is equal to 0. Therefore,
going fromn to n + 1 leads to just adding 1 toS2(n) to findS2(n + 1). We have:

• if S2(n) is even, thenS2(n + 1) is odd,
• if S2(n) is odd, thenS2(n + 1) is even.
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In other terms, ifn is even:

(−1)S2(n)(−1)S2(n+1) = −1.

Now, we prove inductively that, for anyn ∈ 2N,

n−1∑
m=0

(−1)S2(m) = 0.

If n = 2, the result is true. Assume the result forn > 2 even. We have

n−1∑
m=0

(−1)S2(m) = 0

and

n+1∑
m=0

(−1)S2(m) =
n−1∑
m=0

(−1)S2(m) + (−1)S2(n) + (−1)S2(n+1) = (−1)S2(n) + (−1)S2(n+1)

but the sum of these two quantities is zero. Hence, the result. �

Proposition 3. With λ = a + b, we have�λ = {v1 = −b, v2 = 0, v3 = +b}, αλ(−b) =
αλ(0) = αλ(+b) = 1, δλ(−b) = δλ(+b) = 1

2 , δλ(0) = 1, n0 = 1, n1 = 4 = n2 = n3 = · · · =
Card(�λ) + 1.

Proof. Since, for eachn ∈ 2N, we have

n−1∑
m=0

(−1)S2(m) = 0

thenαλ(0) = 1, δλ(0) = 1. Now denote

A− = {n ∈ 2N | (−1)S2(n) = −1}
A+ = {n ∈ 2N | (−1)S2(n) = +1}.

We have 2N = A− ∪ A+ as a disjoint union. The injective applicationφ : x → 2x + 2
defined on 2N sendsA− to A+ andA+ to A−. Therefore, for the distribution of points
f (n), with n ∈ 1 + 2N, on the sublattices±b + λZ, we haveαλ(−b) = αλ(+b) = 1 and
δλ(−b) = δλ(+b) = 1

2. Hence,n0 = 1 with the other valuesnj equal to 4, forj > 1. �

Corollary 1. The intensity per diffracting site of the Thue–Morse sequence, at the wavevector
k = 2π/(a + b), is given by

1

4

∣∣∣∣1 + cos

(
2πb

a + b

)∣∣∣∣2 .
Proof. From theorem 1, we haveκ = 1

2(a + b). Hence,

lim
N→+∞

IN(k))

N
=
(
(a + b)/2

a + b

)2 ∣∣ 1
2e2iπ(−b)/(a+b) + 1 + 1

2e2iπ(+b)/(a+b)
∣∣2

hence the result. �
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The rarefaction laws at infinity of the affine latticesv + (a + b)Z, with v ∈ �a+b, are
reduced to their dominant terms ‘1

2 × q1 or 1× q1’ with scaling exponents all equal to 1.
The Thue–Morse sequence satisfies the assumption (Fλ) of definition 2 forλ = a + b. The
dominant scaling exponent does not change when we now consider the rarefaction laws of
affine latticesw+ (a+b)

m
Z, wherem is an arbitrary positive integer. It remains equal to 1. These

rarefaction laws (calculation of the coefficientδ(a+b)/m(w)) can be easily deduced from the
previous ones by grouping sites according to the new periodicity(a + b)/m.

Corollary 2. The spectrum of the Thue–Morse sequence contains a lattice of Bragg peaks at
integral multiples ofk = 2π/(a + b) and the diffracting intensity per site atkm, for m an
arbitrary positive integer, is given by

1
4 |1 + cos(kmb)|2 .

Proof. We just sketch the proof and refer to [21] for complete details. Letm be an arbitrary
positive integer andλm = (a + b)/m. We have

κ

λm
= m

2

and, withv ∈ �λm , form odd, there exists an integerj such that

lim
q→+∞

δλ,q(v − 1
2(2j −m + 1))

q
= m lim

q→+∞
δλm,q(v)

q

for m even, there exists an integerj ′ such that

lim
q→+∞

δλ,q(v − 1
2(2j

′ −m))
q

= m lim
q→+∞

δλm,q(v)

q
.

Therefore, going from�λ to�λm , leads to dividing all the coefficientsδλ(v) bym. We have

lim
N→+∞

IN(km)

N
= ( 1

2m
)2 ∣∣∣∣ 1

2m
eikm(−b) + 1 +

1

2m
eikm(+b)

∣∣∣∣2
hence the result. �

This result was also obtained by Kolaret al [18] for substitutional systems of length 2
formed with two tiles. In Gaehler and Klitzing [19], the situation is more general. Other non-
trivial Bragg peaks are reported in [18], which can also be studied by the present Lebesgue
decomposition of the structure factor.

We will show in another contribution [21, 25] that the rarefaction laws of the affine lattices
of period(p/s)(a + b) which intersect the Thue–Morse sequence, wherep ands are positive
integers, are given byp-rarefaction laws [24]. They are basically of the type

A1(u) q
1 +A2(q, u) q

d2(u)

whereA2(q, u) is a bounded fractal (continuous nowhere-differentiable) function depending
upon logN/ log 4, where thed2(u)’s are all closely related to logp/(p − 1) log 2. It happens
thatcλ(0) generally cancels for such values of periods. For instance, withλ′ = 3(a + b), p =
3, s = 1, k′ = 2π/λ′,

�3(a+b) = {−a − 2b,−a − b,−a,−b, 0,+b,+a,+a + b,+a + 2b}
= (−(a + b) +�a+b) ∪ (�a+b) ∪ (+(a + b) +�a+b)
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and the sum

cλ′(0) = 1
6e2iπ(−a−2b)/(3(a+b)) + 1

3e2iπ(−a−b)/(3(a+b))

+1
6e2iπ(−a)/(3(a+b)) + 1

6e2iπ(−b)/(3(a+b)) + 1
3 + 1

6e2iπ(+b)/(3(a+b))

+1
6e2iπ(+a)/(3(a+b)) + 1

3e2iπ(+a+b)/(3(a+b)) + 1
6e2iπ(+a+2b)/(3(a+b)) = 0.

This cancels the contribution of the dominant terms, extinguishing the possible Bragg peak at
k′. There appears a singular continuous peak atk′ of well defined exponent (d2 exponents)
with a coefficient which looks like a constant but depends fractally ofq. The scaling exponent
of the diffracting intensity is 2(log 3/ log 4)− 1 in this case [21, 25].

5. Generalized Meyer sets

We will slightly change the axiomatics of CPS in order to keep at the same time the Thue–Morse
sequence on the real line and the relevant rarefaction laws of the affine lattices which intersect
3. This can be formulated within the context of Meyer sets, as generalized Meyer sets under
generalized cut-and-project schemes (generalized CPS), what will be explained below. First,
we recall basic facts of Meyer’s constructions with locally compact Abelian groups, following
Meyer [1], Moody [2] and Baake and Moody [14].

Definition 5 (Classical CPS: cut-and-project scheme).LetG andH be two locally compact
Abelian groups, andπ1 : G×H → G,π2 : G×H → H the canonical projections. We say
thatG producesH if there exists

(A.s) a closed subgroupL of G×H satisfying:
(A.a) L is discrete inG×H
(A.b) L is relatively dense inG×H [property H-(D2)].
(A.c) L ∩ {0} ×H = {0, 0} where 0 denotes the neutral element ofG, respectivelyH .
(A.d) π2(L) is dense inH .

The structure of locally compact Abelian groups is well known. A locally compact group
G contains an open (also closed) subsetG1 of the typeRm × K such thatK is a compact in
the infinite torusT∞ and that the quotientG/G1 is a discrete group. In particular,K may be a
finite-dimensional torus(R/Z)l , for l > 1 any integer. To the knowledge of one of the authors,
for all the applications concerning the crystallography and structure models of quasicrystals,
particularly icosahedral quasicrystals and decagonal quasicrystals, only the Euclidean part was
used up to now in cut-and-project schemes. Some recent results make use ofp-adic internal
spaces [15] in the spirit of the previous works of Meyer [1] and Schreiber [16], but they do not
seem to be used as such by experimentalists.

The normal CPS is a collection of mappings and Euclidean spaces

Rm π1←− Rm × Rn π2−→ Rn

∪
L

whereL ⊂ Rm × Rn is a lattice,π1 and π2 the orthogonal projection mappings onto
Im(π1) := the physical space= Rm, and Im(π2) := the internal space= Rn. L is assumed
such that withL the physical spaceproducesthe internal space,π2(L) is dense inRn andπ1|L
is injective. Letϒ := π1(L). The application

(·)∗ = π2 ◦ (π1|L)−1
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is well defined onϒ and has values in the internal space. It is extended on theQ-spanQϒ of
ϒ . In the context of structure models of quasicrystals, we normally choose latticesL which
are invariant under a finite symmetry group (the icosahedral group, cyclic groups, etc) and
one or several windows [2, 14] in the internal spaceRn to select points ofL. If W ⊂ Rn is a
window, it satisfies the following assumptions:

W1. The windowW ⊂ Rn is compact.

W2. W = int(W) 6= ∅.

W3. The boundary∂W of W has Lebesgue measure 0 and a model set is given by

3 = {x ∈ ϒ |x∗ ∈ W } ⊂ Rm.

Some properties of model sets are the following:

M1. 3 is a Delone set [property H]: it is relatively dense and uniformly discrete.

M2. 3 is aMeyerset:3 is discrete and relatively dense and there exists a finite setF such
that3−3 ⊂ 3+F . Actually the class of model sets is strictly included in the class of Meyer
sets.

M3. 3 has a well defined point densityd (Rogers [17]), i.e. the following limit:

d = lim
R→+∞

#(3 ∩ B(0, R))
Vol(B(0, R))

exists, whereB(0, R) is the ball centred at the origin of radiusR > 0 in Rm. Its volume is
πm/2Rm/0( 1

2(m + 2)).

M4. 3 has a well defined spectrum composed of Bragg peaks.

We now show that the toric part(R/Z)l ,with l = 1, in the internal space, plays naturally a
part in the representation of the Thue–Morse sequence for frequenciesλ such that�λ is finite.

Lemma 3. The Thue–Morse sequence satisfies the properties M1–M3.

Proof. Clearly, M1 is satisfied for3. The fact that M2 is satisfied follows from lemma 2
with F := {0,±(a − b)/2,±(a − b),±3(a − b)/2} since, for anym > n > 0, we have
f (m)− f (n)− f (m− n) ∈ F . Property M3 is satisfied since

3av := 1
2(a + b)Z

is the average lattice of3. There is one point of3 per cell of3av and the point densityd of
the Thue–Morse sequence is equal to 2/(a + b). �

Proposition 4. The Thue–Morse sequence is harmonious.



6458 J-L Verger-Gaugry and J Wolny

Proof. This is a consequence of lemma 3 and theorem X in chapter II in Meyer [1]. �
We will analyse elsewhere characteristics of the Thue–Morse sequence, with the notions

of duality following this proposition.
Now, since it is well known that the Thue–Morse sequence has a spectrum which is not

only composed of Bragg peaks, but possesses a non-trivial singular continuous component
(for instance, Kolaret al [18], Queffelec [8], Kakutani [22], Mahler [23]), we should remove
some assumptions from the normal cut-and-project scheme in order to obtain more general
spectra than Bragg spectra, as given by M4. The Thue–Morse sequence is a Meyer set which
is not a model set. We know that there exists a model set which contains it strictly [2]; here,
we will not use another CPS to obtain it. On the contrary, we invoke a new scheme which
looks like the classical CPS. For this, we will only change the axiomatics of the CPS in a
minimal way, sticking to the formalism of the previous paragraphs. We will have to join to this
geometrical approach and framework the need to define simultaneously scaling exponents for
the diffracting intensity function, for the singular continuous component of the spectrum. We
have then to include the finite set of all lattices that intersect3 in a non-empty way together
with their rarefaction laws, the periodλ being given.

We suggest the following scheme:

S1. TakeH := R/λZ the one-dimensional torus, as the internal space andG := R the physical
space.

S2. Let us denote by

π3 : 1
2(a + b)N −→ 3

the bijective mapping from the average lattice3av ∩ R+ to3 such that, for anyn ∈ N,

f (n) = π3( 1
2(a + b)n).

We have, for any integern

|π3( 1
2(a + b)n)− 1

2n(a + b)| 6 1
2(a − b)

and we denote byπ−1
3 its inverse mapping defined on the set of the elements{f (n)/n ∈ N},

is valued in the average lattice3av. Call u an element in ]−λ/2;+λ/2[ andu its canonical
image inH .

Take

L :=
{
(x, u) ∈ G×H |x ∈ 3av, u such thatu ∈ �λ, u ≡ f

(
2x

a + b

)
(moduloλZ)

}
.

Lemma 4. L is discrete inG×H .

S3. Let us denote bỹπ3 : R→ R any strictly increasing function satisfying

π̃3|3av = π3.

We can take it to be continuous but there is noa priori reason to do so. Then we have a
new CPS consisting of a collection of spaces and mappings:

R π̃3◦π1←− R× R/λZ π2−→ R/λZ
∪
L.
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Lemma 5. π̃3 ◦ π1 is uniformly bounded with respect toπ1 in the sense that its restriction to
L satisfies

‖π̃3 ◦ π1|L‖ = sup
z∈L
|π̃3 ◦ π1(z)− π1(z)| 6 1

2(a − b).

We see that(π̃3 ◦ π1)|L = (π3 ◦ π1)|L is injective, and that the selection mode on the
closed subsetL is not based on a projection mode but on acongruent mode throughf and the
periodλ which is such that�λ is finite. The fact that the window�λ is finite is equivalent to
saying that its Hausdorff dimension in the internal space is zero. Clearly,L is closed inG×H ,
and, since we have assumed thatf (0) = 0, the properties (A.a), (A.b), (A.c) in definition 4
are satisfied.L is a priori not a subgroup inG×H and assumption (A.s) has no reason to be
satisfied.π2(L) is discrete inH by construction. We have a(·)∗ operation as in the normal
CPS:

(·)∗ = π2 ◦ ((π3 ◦ π1)|L)−1 : 3→ H = R/Z.

S4. We can now choose windows as in the normal CPS: ifW is a window,W is a subset
of {u ∈ R/Z|u ∈ �λ}. It is a compact set for which the boundary has Lebesgue measure 0
(properties W1 and W3 are satisfied). It is not the adherence of its interior, and property W2
is not satisfied.

The generalized Meyer sets we can form from the Thue–Morse sequencef with respect
to the frequencyλ such that�λ is finite are given, similarly to the normal CPS, by

3W = {x ∈ 3|x∗ ∈ W }.
Of course, the property M4 is no longer valid and the spectrum displays more peaks than just
Bragg peaks. If the window is maximal, we obtain the full Thue–Morse sequence as defined
algebraically byf . If the window is smaller and contains only some points inside the torus
R/λZ, we obtain a subset of the Thue–Morse sequence and we have only to consider, for the
scaling exponent of the diffracting intensity of the reduced system of points to consider the
values of thelevelsfor the elements which are selected by the window. We have seen that the
scaling exponents and the rarefaction laws (rates of occupancy at infinity) are attached to the
affine latticesv + λZ ∈ H = R/λZ and can be classified according to a lexicographical order
and that the dominant scaling exponent is given by equation (21).

S5. The question of whether there exists a substitute for (A.s), that is, an algebraic structure
onL can be partially overcome by recent results obtained by Gazeau and Miekisz [20] who
have proved that there exists a canonical symmetry group on the Thue–Morse quasicrystal.
By the(·)∗-operation, this can be reported to the elements of the window, and globally onL.
However, the operations of this group have no reason to be stable by classes inside the toric
internal space. So, this operation is not well defined and cannot be used in this case.
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